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Abstract: We construct a 6D supergravity theory which emerges as intermediate step in

the compactification of the heterotic string to the supersymmetric standard model in four

dimensions. The theory has N = 2 supersymmetry and a gravitational sector with one

tensor and two hypermultiplets in addition to the supergravity multiplet. Compactification

to four dimensions occurs on a T 2/Z2 orbifold which has two inequivalent pairs of fixed

points with unbroken SU(5) and SU(2) × SU(4) symmetry, respectively. All gauge, gravi-

tational and mixed anomalies are cancelled by the Green-Schwarz mechanism. The model

has partial 6D gauge-Higgs unification. Two quark-lepton generations are localized at the

SU(5) branes, the third family is composed of split bulk hypermultiplets. The top Yukawa

coupling is given by the 6D gauge coupling, all other Yukawa couplings are generated by

higher-dimensional operators at the SU(5) branes. The presence of the SU(2)×SU(4) brane

breaks SU(5) and generates split gauge and Higgs multiplets with N = 1 supersymmetry

in four dimensions. The third generation is obtained from two split 5̄-plets and two split

10-plets, which together have the quantum numbers of one 5̄-plet and one 10-plet. This

avoids unsuccessful SU(5) predictions for Yukawa couplings of ordinary 4D SU(5) grand

unified theories.
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1. Introduction

The symmetries and the particle content of the standard model point towards grand unified

theories (GUTs). The simplest unified gauge group is SU(5) with three 5̄- and 10-plets for

the three quark-lepton generations of the standard model [1]. Higgs doublets can be ob-

tained from further 5- and 5̄-plets, with their heavy colour triplet partners decoupled from

the low energy theory. In supersymmetric GUTs the hierarchy between the electroweak

scale and the GUT scale is stabilized and, for the minimal case of two Higgs doublets,

gauge couplings unify at the scale MGUT ≃ 2 × 1016 GeV.
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Neutrino masses and mixings can be described by adding a non-renormalizable, lepton-

number violating dimension-5 operator composed of lepton and Higgs doublets, with cou-

pling strength 1/Λ. The observed smallness of the neutrino masses then requires Λ =

O(MGUT), hinting at a B−L breaking scale of the order of MGUT. Embedding SU(5) and

U(1)B−L in SO(10) [2, 3], and continuing the route of unification via exceptional groups,

one arrives at E8, which is beautifully realized in the heterotic string [4, 5].

An elegant scheme leading to chiral gauge theories in four dimensions is the compact-

ification on orbifolds [6 – 10]. Recently, considerable progress has been made in deriving

unified field theories from orbifold compactifications of the heterotic string [11 – 16], and

it has been demonstrated that the idea of local grand unification can serve as a guide to

find string vacua corresponding to the supersymmetric standard model [17 – 19]. In this

paper we study in some detail an orbifold GUT limit of the model [17], where two of the

compact dimensions are larger than the other four. In this way we hope to obtain a bet-

ter understanding of some open questions of current orbifold compactifications: the large

vacuum degeneracy, the decoupling of unwanted massless states and the stabilization of

moduli fields.

The model [17] is based on a Z6−II twist which is the product of a Z3 twist and a Z2

twist. In a first step, described in section 2, we compactify the E8 × E8 heterotic string

on the orbifold T 4/Z3, where T 4 is a 4-torus with the Lie algebra lattice G2 × SU(3). The

six-dimensional (6D) theory has N = 2 supersymmetry and unbroken gauge group

G6 = SU(6) × U(1)3 ×
[
SU(3) × SO(8) × U(1)2

]
, (1.1)

where the brackets denote the subgroup of the second E8. The gravitational sector contains

one tensor multiplet whose (anti-)self-dual part belongs to the N = 2 (dilaton) supergravity

multiplet.

Compactification from six to four dimensions on the orbifold T 2/Z2 with SO(4) Lie

lattice leads to additional fixed points and twisted sectors. The massless spectrum in four

dimensions agrees with the results obtained in [17, 18]. In addition to the zero modes, the

6D field theory contains the Kaluza-Klein excitations of the large SO(4)-plane and further

non-Abelian singlets. As described in section 3, the projection conditions for physical

massless states of the model [17] now become Z2 projection conditions for the 6D bulk

fields at the orbifold fixed points in the SO(4)-plane.

Given the Z2 parities of the 6D bulk fields, one can perform a highly non-trivial

consistency check of the 6D field theory, the cancellation of all gauge, gravitational and

mixed anomalies by the Green-Schwarz mechanism [20]. In section 4 it is explicitly shown

that all irreducible anomalies vanish and that the reducible ones are indeed cancelled by

a unique Green-Schwarz term in the effective action [21, 22]. The 6D theory has different

local anomalous U(1) symmetries at the different fixed points in the SO(4) plane. Their

sum yields the anomalous U(1) of the 4D theory [18].

The 6D theory has a GUT gauge group and N = 2 supersymmetry, and therefore

considerably fewer multiplets than the 4D theory. This simplifies the decoupling of un-

wanted exotic states as we show in section 5. For a vacuum with spontaneously broken
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B − L symmetry we then obtain a local SU(5) GUT model with two localized and two

bulk quark-lepton families. The Higgs fields are identified as bulk fields with partial gauge-

Higgs unification. The SU(5) invariant Yukawa couplings and the SU(5) breaking by the

Z2 orbifolding are discussed in section 6. Open problems concerning supersymmetric vacua

and the stabilization of the compact dimensions are outlined in section 7.

Finally, in section 8, we conclude with a brief outlook on open questions and further

challenges for realistic compactifications of the heterotic string.

2. 6D supergravity from the heterotic string

2.1 The heterotic string on T 6/Z6−II

We consider the propagation of the E8 × E8 heterotic string in a space-time background

which is the product of four-dimensional Minkowski space and a six-dimensional orb-

ifold [23]. The compact space is obtained by dividing the torus T 6 = R
6/2πΛ by the

discrete symmetry Z6−II = Z3×Z2 of the Lie algebra lattice SO(4)×SU(3)×G2. The four

complex coordinates zi, i = 1 . . . 4, comprise the two transverse dimensions of Minkowski

space (i = 4) and the six compact dimensions (i = 1 . . . 3).

The Z6−II orbifold with the G2 × SU(3) × SO(4) lattice is characterized by the twist

vector

v6 =

(
−1

6
,−1

3
,
1

2
; 0

)
, (2.1)

which is the sum of Z3 and Z2 twist vectors, v6 = −v3 + v2, where

v3 = 2v6 , v2 = 3v6 . (2.2)

Note that the Z3 twist leaves the SO(4) plane invariant whereas the Z2 twist does not

affect the SU(3) plane. Both twists act non-trivially on the G2 plane.

In the light-cone gauge the heterotic string can be described by 4 complex coordi-

nates Zi(σ) (i = 1 . . . 4), 4 bosonized right-moving Neveu-Schwarz-Ramond (NRS) fermions

H i(σ−) (i = 1 . . . 4) and 16 left-moving bosons XI(σ+) (I = 1 . . . 16), where σ± = τ ± σ.

The fields XI are compactified on the 16-dimensional E8 ×E8 torus. Correspondingly, the

momenta of the right-moving fields H i lie on the weight lattice of the little group SO(8).

The quantum numbers of a string state are thus given by the E8 × E8 root vector pI for

the gauge and the SO(8) weight vector qi for the Lorentz quantum numbers.

The orbifold twist is embedded into the gauge group by the Z6 twist vector

V6 =

(
−1

2
,−1

2
,
1

3
, 05

)(
17

6
,

(
−5

2

)6

,
5

2

)
. (2.3)

In addition, there are two Wilson lines associated with the two subtwists: a Z3 Wilson line

W3 in the SU(3) plane and a Z2 Wilson line W2 in the SO(4) plane, given by

W3 =

(
−1

6
,
1

2
,
1

2
,

(
−1

6

)5
)(

0,−2

3
,
1

3
,
4

3
,−1, 03

)
, (2.4)

W2 =

(
−1

2
, 0,−1

2
,
1

2
,
1

2
, 03

)(
23

4
,−25

4
,−21

4
,−19

4
,−25

4
,−21

4
,−17

4
,
17

4

)
. (2.5)
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G2 n3 = 0

n3 = 1

n3 = 2

SU(3)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

SO(4)

Figure 1: The tori of the orbifold T 6/Z6. Red crosses mark fixed points of the Z3 twist used for

the first step of compactification. The SO(4) torus is invariant, while the other tori contain three

fixed points each. The fixed points in the G2 torus are equivalent, while the SU(3) torus contains a

Wilson line, and the fixed points are inequivalent and labelled by n3. The blue circles mark the Z2

fixed points in the SO(4) plane which are labelled by (n2, n
′

2). There are further Z2 fixed points in

the G2 torus which are not shown.

A basis in the Hilbert space of the quantized string is obtained by acting with the cre-

ation operators (n < 0) for right-handed modes (αi
n, β̃i

n) and left-handed modes (α̃i
n, α̃I

n) on

the ground states of the untwisted sector U (k = 0) and the twisted sectors Tk (k = 1 . . . 5).

The ground states of the different sectors depend on the momentum vectors qi, pI and, for

the twisted sectors, also on the fixed point f (cf. [23, 18]),

|q, p〉 ≡ |q〉 ⊗ |p〉 , |f ; q, p〉 ≡ |qsh〉 ⊗ |psh〉 , (2.6)

with the shifted momenta

qsh = q + kv6 , psh = p + Vf . (2.7)

Here k is the order of the twist and Vf is the local gauge twist at the fixed point f . It turns

out that for the considered model only oscillator modes of the left-moving strings Zi
L(σ+),

Z∗i
L (σ+) and XI(σ+) are relevant.

2.2 Intermediate Z3 compactification

We are now interested in the effective field theory for the massless states in the limit where

the SO(4) plane is much larger the G2 and SU(3) planes, yielding approximately flat 6D

Minkowski space. Hence, in a first step, we consider the compactification on the orbifold

T 4/Z3. The physical states of the gravitational sector,

|q, i〉 = |q〉 ⊗ α̃i
−1|0〉 , |q, i∗〉 = |q〉 ⊗ α̃∗i

−1|0〉 , (2.8)

– 4 –



J
H
E
P
0
9
(
2
0
0
7
)
1
1
3

have to satisfy the mass equations

1

8
m2

R =
1

2
q2 − 1

2
= 0 , (2.9a)

1

8
m2

L =
1

2
p2 − 1 + Ñ + Ñ∗ = 0 . (2.9b)

Here p = 0, and Ñ , Ñ∗ are the oscillator numbers for left-moving modes in zi, z∗i directions,

summed over i: Ñ =
∑

i Ñi, Ñ∗ =
∑

i Ñ
∗
i . Furthermore, physical states have to be

invariant under the Z3 twist,

v3 ·
(
Ñ − Ñ∗ − q

)
= 0 mod 1 . (2.10)

The 16 bosonic states1 q = (0, 0,±1, 0) with i = 3, 4, together with the 16 fermionic

states q =
(

1
2 , 1

2 ,±1
2 ,±1

2

)
,
(
−1

2 ,−1
2 ,±1

2 ,±1
2

)
with i = 3, 4, form the familiar 6D supergrav-

ity and dilaton N = 2 multiplets [24],

(GMN , B+
MN ,ΨM ) , (B−

MN ,Φ, χ) . (2.11)

Here B+
MN (B−

MN ) is the antisymmetric tensor field with (anti-)self-dual field strength.

Note that together there is only one tensor field BMN without self-duality conditions,

which is the special case for which a lagrangian exists.

The 4 bosonic states q = (1, 0, 0, 0), (0,−1, 0, 0) with Ñ1 = 1, Ñ∗
2 = 0 or Ñ1 = 0,

Ñ∗
2 = 1, together with the corresponding 4 fermionic states q =

(
1
2 ,−1

2 , 1
2 ,−1

2

)
and the

charge conjugate states, correspond to two 6D hypermultiplets,

C1 , C2 . (2.12)

They contain the two ‘radion’ fields of the small G2 and SU(3) tori as well as off-diagonal

components of the metric and the tensor fields and the associated superpartners. The

complex structure of the small dimensions is fixed. All 24 bosonic fields originate from the

64 bosonic states ĜMN , B̂MN and Φ̂ in 10 dimensions. The remaining 40 bosonic states

and their fermionic superpartners are projected out by the Z3 twist.

The massless physical states of the gauge sector,

|q, p〉 ≡ |q〉 ⊗ |p〉 , (2.13)

have vanishing oscillator numbers and satisfy the projection conditions

v3 · q − Vf · p = 0 mod 1 . (2.14)

Here Vf = 2(V6 + n3W3) are the local Z3 gauge subtwists of the model. They differ

by multiples of the Z3 Wilson line W3 in the SU(3) plane, which distinguishes the three

inequivalent fixed points labelled by n3 = 0, 1, 2 (cf. figure 1). Eqs. (2.14) are equivalent to

v3 · q − V3 · p = 0 mod 1 , W3 · p = 0 mod 1 , (2.15)

1Underline denotes all permutations.
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where the second condition reflects the fact that the finite extension of the SU(3) plane is

neglected in the 6D effective field theory.

At each fixed point in the SU(3) plane the group E8 × E8 is broken to the subgroup

SO(14)×U(1)×[SO(14) × U(1)], which is differently embedded into E8×E8 at the different

fixed points [18]. The brackets denote the subgroup of the second E8. The U(1) factors are

sometimes omitted; they can always be reconstructed since the rank of the gauge group is

preserved. One easily verifies that the intersection of the three E8 × E8 subgroups, which

yields the unbroken gauge group of the 6D theory, is given by

G6 = SU(6) × U(1)3 ×
[
SU(3) × SO(8) × U(1)2

]
, (2.16)

with the massless N = 2 vector multiplets

(35; 1, 1) + (1;8, 1) + (1; 1,28) + 5 × (1; 1, 1) . (2.17)

The massless vector states are obtained from the conditions (2.14) for v3 · q = 0.

There are two further possibilities, v3 · q = ±1/3 and v3 · q = ±2/3, which lead to N = 2

hypermultiplets. A straightforward calculation yields the gauge multiplets

(20; 1, 1) + (1; 1,8) + (1; 1,8s) + (1; 1,8c) + 4 × (1; 1, 1) , (2.18)

with the U(1) charges listed in table 10.

In addition to the vector and hypermultiplets from the untwisted sector of the string,

there are 6D bulk fields which originate from the twisted sectors T2 and T4 of the Z6−II

model, corresponding to the twisted sectors T̂1 and T̂2 of the Z3 subtwist. The projection

conditions for physical states are

v3 ·
(
Ñf − Ñ∗

f

)
− v3 · (q + v3) + Vf · (p + Vf ) = 0 mod 1 , (2.19)

where Ñf , Ñ∗
f are the integer oscillator numbers for left-moving modes localized at the

fixed point f (cf. [18]).

At each fixed point one has states with Ñf = Ñ∗
f = 0, which yield N = 2 hypermul-

tiplets (14, 1) and (1,14). With respect to the 6D gauge group these multiplets form the

reducible representations

(14, 1) = (6; 1, 1) + (6̄; 1, 1) + 2 × (1; 1, 1) , (2.20a)

(1,14) = (1;3, 1) + (1; 3̄, 1) + (1; 1, 8̂) . (2.20b)

At the three SU(3) fixed points, (1; 1, 8̂) corresponds to (1; 1,8), (1; 1,8s) and (1; 1,8c),

respectively. Furthermore, there are oscillator states for the two small compact planes,

|q + v3〉 ⊗ α̃i
f−1|p + Vf 〉 , |q + v3〉 ⊗ α̃∗i

f−1|p + Vf 〉 , i = 3, 4 , (2.21)

which yield two non-Abelian singlet hypermultiplets for each fixed point.

In addition to the three inequivalent fixed points in the SU(3) plane, there are three

equivalent fixed points of the Z3 twist in the G2 plane. This yields a multiplicity of three

– 6 –
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Sector Multiplet Representation #

Gravity Graviton GMN 1

Dilaton Φ 1

Hyper C1, C2 2

Untwisted Vector (35; 1, 1) 35

(1;8, 1) 8

(1; 1,28) 28

5 × (1; 1, 1) 5

Untwisted Hyper (20; 1, 1) 20

(1; 1,8) + (1; 1,8s) + (1; 1,8c) 24

4 × (1; 1, 1) 4

Twisted Hyper 9 × (6; 1, 1) + 9 × (6̄; 1, 1) 108

9 × (1;3; 1, 1) + 9 × (1; 3̄; 1, 1) 54

3 × (1; 1,8) + 3 × (1; 1,8s) + 3 × (1; 1,8c) 72

36 × (1; 1, 1) 36

Table 1: N = 2 supermultiplets of the 6D theory: graviton, dilaton, 76 vector and 320 hypermul-

tiplets. The non-Abelian symmetry group is SU(6) × [SU(3) × SO(8)].

for all hypermultiplets from the T2 and T4 sectors. All the multiplets of the 6D theory are

summarized in table 1. The full listing including the U(1) charges is given in appendix A.2.

Let us finally consider the interaction between vector and hypermultiplets. It is con-

venient to decompose all N = 2 6D multiplets in terms of N = 1 4D multiplets. The

6D vector multiplet splits into a pair of 4D vector and chiral multiplets, A = (V, φ), and

a hypermultiplet consists of a pair of chiral multiplets, H = (HL,HR); here φ and HL are

left-handed, HR is right-handed. In flat space, the interaction lagrangian takes the simple

form [25]

LH =

∫
d4θ

(
H†

Le2gV HL + Hc†
R e−2gV Hc

R

)
+

∫
d2θ Hc

R

(
∂ +

√
2gφ

)
HL + h.c. (2.22)

After compactification to four dimensions, the first term yields the familiar gauge interac-

tions, whereas the second term can give rise to Yukawa couplings. For the hypermultiplet

(20; 1, 1) one obtains

LH ⊃
√

2g

∫
d2θ Hc

R(20)φ(35)HL(20) + h.c. (2.23)

The SU(6) 20-plet contains SU(5) 10- and 10-plets, and the 35-plet contains SU(5) 5- and

5̄-plets. As we shall see in section 6, after projection onto 4D zero modes, eq. (2.23) yields

precisely the top Yukawa coupling. The Yukawa terms for the hypermultiplets (6; 1, 1) and

(6̄; 1, 1),

LH ⊃
√

2g

∫
d2θ (Hc

R(6)φ(35)HL(6) + Hc
R(6̄)φ(35)HL(6̄)) + h.c. (2.24)

will be important for the decoupling of exotic states in section 5.
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n2 Gauge group

0 SU(5) × U(1)4 ×
[
SU(3) × SO(8) × U(1)2

]

1 SU(2) × SU(4) × U(1)4 ×
[
SU(2)′ × SU(4)′ × U(1)4

]

∩ SU(3) × SU(2) × U(1)5 ×
[
SU(2)′ × SU(4)′ × U(1)4

]

Table 2: List of the local gauge groups and their intersection.

3. Z2 Compactification to four dimensions

The compactification from six to four dimensions on a Z2 orbifold leads to four additional

fixed points in the SO(4) plane and to further projection conditions for physical massless

states. The fixed points are labelled by (n2, n
′
2) = (0, 0), (0, 1), (1, 0), (1, 1) (cf. figure 1).

Due to the Wilson line W2, they come in two pairs of equivalent fixed points, and the

projection conditions only depend on n2 and not on n′
2.

At the fixed points, half of the supersymmetry generators are broken and only N = 1

supersymmetry remains unbroken. For the gravitational and gauge multiplets of the un-

twisted sector the projection conditions are [18]

v2 ·
(
Ñ − Ñ∗

)
− v2 · q + Vf · p = 0 mod 1 , (3.1)

where v2 = 3v6, and Vf = 3V6 + n2W2 are the local twists at the fixed points n2 = 0, 1 in

the SO(4) plane.

In this paper we consider an anisotropic orbifold where the SO(4) plane is much larger

than the G2 and SU(3) planes. The Kaluza-Klein states of the SO(4) plane can be included

in an effective field theory below the string scale by considering fields in the two large

compact dimensions instead of 4D zero modes which are assumed to be constant in the

compact dimensions. For the Z2 twist, one has (cf. [18]) (θ3, lf )(z3
f + z3) = z3

f − z3, where

(θ3, lf ) is the space group element of the fixed point f and z3 = y5 + iy6 is the complex

coordinate in the SO(4) plane. The projection conditions (3.1) for the massless states then

become local projection conditions for fields in the compact dimensions,

Pf : φ(yf + y) = ηf (φ)φ(yf − y) ,

ηf (φ) = exp
{

2πi
(
v2 · (Ñ − Ñ∗ − q) + Vf · p

)}
.

(3.2)

The momenta p, q and the oscillator number Ñ − Ñ∗ of the states determine the quantum

numbers of the corresponding fields φ, and ηf (φ) = ±1. Only fields which have positive

parity at all fixed points have zero modes.

As an example, consider the 6D metric

ds2 = gMNdxMdxN = gµνdxµdxν + 2gµmdxµdym + gmndymdyn , (3.3)

– 8 –
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Bulk n2 = 0 V φ t06

(35; 1, 1) (24; 1, 1) + − 0

(5; 1, 1) − + −6

(5̄; 1, 1) − + 6

(1; 1, 1) + − 0

(1;8, 1) (1;8, 1) + − 0

(1; 1,28) (1; 1,28) + − 0

Table 3: Local decomposition of vector multiplets at n2 = 0.

where xµ and ym are the coordinates of 4D Minkowski space and the two compact dimen-

sions, respectively. One easily obtains from eqs. (2.8) and (3.2) the projection conditions

gµν(x, y) = gµν(x,−y) , gµm(x, y) = −gµm(x,−y) , gmn(x, y) = gmn(x,−y) . (3.4)

The 4D zero mode gµν(x) is part of the N = 1 supergravity multiplet (gµν , ψµ) while the

three degrees of freedom in gmn(x) join with B56 to form the moduli multiplets T and S

containing the radion field and the complex structure of the torus.

The projection conditions for the N = 2 vector multiplets A are most conveniently

expressed in terms of the corresponding N = 1 vector (V ) and chiral (φ) multiplets,

A = (V, φ), which are elements of the Lie algebra of the 6D bulk gauge group. The

unbroken gauge group at the fixed point f is determined by the condition

p · Vf = 0 mod 1 . (3.5)

At the fixed points n2 = 0 and n2 = 1 in the SO(4) plane, the bulk gauge group SU(6) ×
[SU(3) × SO(8)] is broken to subgroups containing SU(5) × [SU(3) × SU(8)] and SU(2) ×
SU(4)× [SU(2)′×SU(4)′], respectively. At the two fixed points the conditions for the vector

and chiral multiplets are given by

PfV (x, yf − y)Pf = V (x, yf + y) , Pfφ(x, yf − y)Pf = −φ(x, yf + y) , (3.6)

where Pf is the Z2 parity matrix. Again only N = 1 supersymmetry remains unbroken.

As an example, for the SU(6) factor, one has P0 = diag(1, 1, 1, 1, 1,−1) at n2 = 0, and

P1 = diag(1, 1,−1,−1,−1,−1) at n2 = 1. The decomposition of the bulk gauge fields

with respect to the locally unbroken subgroups, together with all U(1) charges, are listed

in tables 3 and 4. For the unbroken subgroup, vectors have positive and scalars negative

parity; for the broken generators the situation is reversed.

At the fixed point n2 = 0 the GUT group SU(5) × U(1) is unbroken, and the N = 2

vector multiplet 35 of SU(6) splits into the N = 1 vector multiplets 24 + 1 with pos-

itive parity and the N = 1 chiral multiplets 5 + 5̄ with positive parity from the coset

SU(6) /(SU(5) × U(1)). From table 4 one reads off that the projection condition at the

fixed point n2 = 1 projects out the colour triplets from both the 5- and the 5̄-plets. This
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Bulk n2 = 1 V φ t16 t7 t8

(35; 1, 1) (3, 1; 1, 1) + − 0 0 0

(1,15; 1, 1) + − 0 0 0

(2,4; 1, 1) − + 15 0 0

(2, 4̄; 1, 1) − + −15 0 0

(1, 1; 1, 1) + − 0 0 0

(1;8, 1) (1, 1;3, 1) + − 0 0 0

(1, 1;2, 1) − + 0 3 0

(1, 1;2, 1) − + 0 −3 0

(1, 1; 1, 1) + − 0 0 0

(1; 1,28) (1, 1; 1,15) + − 0 0 0

(1, 1; 1,6) − + 0 0 2

(1, 1; 1,6) − + 0 0 −2

(1, 1; 1, 1) + − 0 0 0

Table 4: Local decomposition of vector multiplets at n2 = 1.

is the well known doublet-triplet splitting of orbifold GUTs. As we shall discuss in sec-

tion 5, the remaining SU(2) doublets can play the role of Higgs or lepton doublets in the

4D effective theory.

The N = 2 hypermultiplets H consist of pairs of N = 1 left- and right-chiral multiplets,

H = (HL,HR). For the projection conditions one finds

PfHL(x, yf − y) = ηfHL(x, yf + y) , PfHR(x, yf − y) = −ηfHR(x, yf + y) , (3.7)

where Pf is now a matrix in the representation of H, and ηf has to be calculated using

eq. (3.2). The parities for the hypermultiplets from the untwisted sector, decomposed with

respect to the unbroken groups at the fixed points n2 = 0 and n2 = 1 are listed in the

tables 5 and 6.

Zero modes with standard model quantum numbers are contained in two N = 1 chiral

multiplets which are SU(5) 10-plets,

HL = (10; 1, 1) , Hc
R = (10

c
; 1, 1) . (3.8)

From the tables 5 and 6 one easily verifies that the projection conditions at the fixed point

n2 = 1 yield the following quark-lepton states as 4D zero modes:

10 : (3, 2) = q ; 10
c
: (3̄, 1) = uc , (1, 1) = ec . (3.9)

Together, the zero modes have again the quantum numbers of one SU(5) 10-plet. However,

as we shall see in section 6, it is crucial for their Yukawa couplings that they originate from

two distinct SU(5) 10-plets.

As discussed in the previous section, the N = 2 hypermultiplets from the T2/T4 sector

are bulk fields in the SO(4) plane, but localized in the G2 and SU(3) planes. With respect
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Bulk n2 = 0 HL HR t06 t1 t2 t3 t4 t5

(20; 1, 1) (10; 1, 1) + − 3 −1
2

1
2 0 0 0

(1̄0; 1, 1) − + -3 −1
2

1
2 0 0 0

(1; 1,8) (1; 1,8) − + 0 0 0 0 −1 0

(1; 1,8s) (1; 1,8s) + − 0 0 0 0 1
2

3
2

(1; 1,8c) (1; 1,8c) + − 0 0 0 0 1
2 −3

2

(1; 1, 1) (1; 1, 1) − + 0 1
2

1
2 3 0 0 U1

(1; 1, 1) (1; 1, 1) + − 0 1
2

1
2 −3 0 0 U2

(1; 1, 1) (1; 1, 1) + − 0 1 −1 0 0 0 U3

(1; 1, 1) (1; 1, 1) + − 0 −1 −1 0 0 0 U4

Table 5: Local decomposition of untwisted hypermultiplets at n2 = 0.

Bulk n2 = 1 HL HR t16 t7 t8 t1 t2 t3 t4 t5

(20; 1, 1) (2,6; 1, 1) − + 0 0 0 −1
2

1
2 0 0 0

(1,4; 1, 1) + − −15 0 0 −1
2

1
2 0 0 0

(1, 4̄; 1, 1) + − 15 0 0 −1
2

1
2 0 0 0

(1; 1,8) (1, 1; 1,4) − + 0 0 −1 0 0 0 −1 0

(1, 1; 1, 4̄) + − 0 0 1 0 0 0 −1 0

(1; 1,8c) (1, 1; 1,6) − + 0 0 0 0 0 0 1
2 −3

2

(1, 1; 1, 1) + − 0 0 2 0 0 0 1
2 −3

2

(1, 1; 1, 1) + − 0 0 −2 0 0 0 1
2 −3

2

(1; 1,8s) (1, 1; 1,4) − + 0 0 1 0 0 0 1
2

3
2

(1, 1; 1, 4̄) + − 0 0 −1 0 0 0 1
2

3
2

(1; 1, 1) (1, 1; 1, 1) − + 0 0 0 1
2

1
2 3 0 0 U1

(1; 1, 1) (1, 1; 1, 1) − + 0 0 0 1
2

1
2 −3 0 0 U2

(1; 1, 1) (1, 1; 1, 1) − + 0 0 0 1 −1 0 0 0 U3

(1; 1, 1) (1, 1; 1, 1) − + 0 0 0 −1 −1 0 0 0 U4

Table 6: Local decomposition of untwisted hypermultiplets at n2 = 1.

to the bulk gauge group they transform as (6; 1, 1), (6̄; 1, 1), (1;3, 1), (1; 3̄, 1), (1; 1,8),

(1; 1,8c), (1; 1,8s) and (1; 1, 1). One can form linear combinations of the states localized

at the equivalent fixed points in the G2 plane, which are eigenstates of the Z2 twist,
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Θ3|qγ〉 = exp{(2πiqγ)}|qγ〉. For the twisted sector fields the projection conditions depend

on the phase qγ , and the parities ηf (φ) are given by

ηf (φ) = exp
{
2πi

(
v2 · (Ñ − Ñ∗ − q) + Vf · p + qγ

)}
. (3.10)

For the T2/T4 twisted states qγ takes the values 0, 1/2, 1. The corresponding 6 parities

for all hypermultiplets H = (HL,HR) at the fixed points n2 = 0 and n2 = 1 are listed in

tables 12–15.

The 6D theory contains 9 hypermultiplets of SU(5) 5-plets and 9 hypermultiplets of 5̄-

plets. Each hypermultiplet contains a pair of 5 and 5̄ N = 1 chiral multiplets. As table 12

shows, the positive parities select from each triplet of hypermultiplets, with qγ = 0, 1/2, 1,

a chiral combination of 5-plets: one 5 and two 5̄’s or two 5’s and one 5̄. The projection

conditions at n2 = 1 then leave as 4D zero modes from each 5- or 5̄-plet either the SU(3)

triplet or the SU(2) doublet. In this way a spectrum of massless states is generated which

is chiral with respect to the standard model group.

The Z2 orbifolding leads from the Z3 orbifold model of section 2 to a Z6 orbifold model,

and therefore to new twisted sectors T1/T5 and T3. The massless states are obtained from

the corresponding mass equations (cf. [18]) with k = 1 and k = 3, respectively. In the T3

sector one can choose a basis of eigenstates of the Z3 twist, Θ2|qγ〉 = exp{(2πiqγ)}|qγ〉, with

qγ = 0, 1/3,−1/3, 1 (cf. [18]). The projection conditions for physical states now involve the

parities

ηf (φ) = exp
{
2πi

(
v3 · (Ñ − Ñ∗ − q) + Vf · p + qγ

)}
. (3.11)

The states are bulk fields in the SU(3) plane, whose extension we neglect, but localized in

the G2 and SO(4) planes. All massless states from the T1/T5 and T3 sectors at the fixed

points n2 = 0 and n2 = 1 are listed in tables 16 and 17.

At both fixed points with n2 = 0, one standard model family with SU(5) quantum

numbers 5̄ + 10 occurs. All other states are standard model singlets. On the contrary,

there are no standard model singlets at the fixed point n2 = 1, but only colour singlets

with exotic SU(2) × U(1) quantum numbers.

So far we have ignored the localization number n′
2 = 0, 1 of the fixed points in the SO(4)

plane, since it just leads to a doubling of the states localized at n2 = 0, 1. Altogether, we

have a rather simple picture for the standard model non-singlet states: There are two

quark-lepton families localized at

n2 = 0, n′
2 = 0, 1 : 5̄ + 10 . (3.12)

From the bulk fields, vector and hypermultiplets, we have

11 × 5̄ + 9 × 5 + 10 + 10
c
. (3.13)

The spectrum is chiral and looks like four quark-lepton families plus 9 pairs of 5’s and 5̄’s.

However, the projection conditions at the n2 = 1 fixed points eliminate half of the bulk

fields, so that one is left with three quark-lepton families and several vector-like pairs of

SU(3) triplets and SU(2) doublets which can accomodate a pair of Higgs doublets. Which
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U(1) Generator Embedding into E8 × E8 Bulk n2 = 0 n2 = 1

t1 (0, 1, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0)
√ √ √

t2 (0, 0, 1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0)
√ √ √

t3 (1, 0, 0, 1, 1, 1, 1, 1) (0, 0, 0, 0, 0, 0, 0, 0)
√ √ √

t4 (0, 0, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0, 0)
√ √ √

t5 (0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 1, 1, 0, 0, 0, 0)
√ √ √

t06 (5, 0, 0,−1,−1,−1,−1,−1) (0, 0, 0, 0, 0, 0, 0, 0) × √ ×
t16 (5, 0, 0,−10,−10, 5, 5, 5) (0, 0, 0, 0, 0, 0, 0, 0) × × √

t7 (0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 1,−2, 0, 0, 0, 0) × × √

t8 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0,−1,−1,−1, 1) × × √

t0an (5, 0,−4,−1,−1,−1,−1,−1) (5,−1,−1,−1, 0, 0, 0, 0)
√

t1an (1, 3,−1, 1, 1, 1, 1, 1) (−4, 4, 4, 4, 0, 0, 0, 0)
√

t
(4d)
an

(
11
6 , 1

2 ,−3
2 ,−1

6 ,−1
6 ,−1

6 ,−1
6 ,−1

6

) (
1, 1

3 , 1
3 , 1

3 , 0, 0, 0, 0
)

Table 7: Definition of the U(1) generators. The last three columns indicate whether the generator

is part of a non-Abelian group (×) or commutes with the semi-simple group (
√

) in the bulk and

at the fixed points. The anomalous U(1)’s are linear combinations of the commuting U(1)’s at the

fixed point specified by the superscript or in four dimensions; they are denoted by t0an, t1an and t
(4d)
an ,

respectively.

5̄’s contain the quark and lepton states of the third family, and which one the Higgs doublet

depends on the chosen vacuum. At the fixed points n2 = 1 there are additional localized

states with exotic quantum numbers. Using the tables 3, 4, 12 and 13 one can check that

the spectrum of zero modes obtained in [18] is reproduced.

The determination of possible supersymmetric vacua, where some of the standard

model singlet fields acquire large VEVs, is discussed in sections 5 and 6. In such vacua,

unwanted SU(3) triplets and SU(2) can be decoupled. The positive and negative parities

at the fixed points n2 = 0, 1, listed in the tables 3–6 and 12–15, are also needed to check

the cancellation of anomalies for the constructed 6D supergravity theory.

4. Anomalies

Anomalies of field theories on orbifolds are well understood [26], and also the six-

dimensional case has been discussed in detail [21, 27, 28, 22, 29]. In general the orbifold

anomaly has bulk and brane contributions. While the bulk terms are already present

in the torus compactification, the localized anomalies crucially depend on the projection

conditions at the orbifold fixed points and the twisted sectors of the orbifold. Thus the

requirement that all anomalies of the model can be cancelled imposes highly non-trivial

conditions on the spectrum. In the present model their fulfillment is guaranteed by the fact
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that it has been derived from string theory, which automatically provides the right Green-

Schwarz terms for anomaly cancellation [20]. In this section we apply its six-dimensional

version [21, 22] to our effective T 2/Z2 orbifold model.

4.1 Anomalies and the Green-Schwarz mechanism

Gauge anomalies require chiral fermions2, so they can occur in any even dimension. Gravi-

tational anomalies3, on the other hand, only arise in 4k+2 dimensions (k = 0, 1, . . .), hence

they will appear in the bulk theory, but not on the branes.

The anomaly A is defined as the (nonvanishing) gauge variation of the effective action,

A(Λ) = δΛΓ. It can be computed from the anomaly polynomial, a (formal) closed and

gauge invariant (d + 2)-form Id+2, via the Stora-Zumino descent equations [30],

A(Λ) ∝
∫

I
(1)
d , dI

(1)
d = δΛI

(0)
d+1 , dI

(0)
d+1 = Id+2 , (4.1)

where the superscript indicates the order in the parameter Λ. Id+2 is a polynomial in traces

of powers of the Riemann and Yang-Mills field strength tensors R and FI , interpreted as

matrix-valued two-forms 1
2R b

µν a dxµdxν and 1
2F j

I µν i dxµdxν . They are derived from spin

and gauge connection one-forms as R = dΩ + Ω2 and FI = dAI + A2
I , where I labels the

factors of the gauge group. Here a, b are indices in the vector representation of SO (1, d − 1),

i, j are indices of some representation of the gauge group, and wedge products of forms are

understood. Expressions of the form trFn
I or tr Rn, the building blocks of Id+2, are always

closed and gauge invariant. Their coefficients in the anomaly polynomial depend on the

numbers, representations and charges of the fermions under the respective gauge groups.

For the Green-Schwarz mechanism to cancel the anomalies, we exploit the transforma-

tion properties of the two-form B2 = 1
2Bµνdxµdxν . Its variation under gauge and Lorentz

transformations with parameters ΛI and Θ is

δB2 = tr (Θ d Ω)−
∑

I

αI tr(ΛIdAI) . (4.2)

The coefficients αI are αSU(N) = 2 and αSO(N) = 1 (the U(1) coefficients are normalization

dependent). The crucial feature of this transformation is that δB2 itself is the descent of

the closed and gauge invariant four-form

X4 = tr R2 −
∑

I

αI tr F 2
I , (4.3)

such that the 3-form field strength H3 = dB2 − X
(0)
3 associated with B2 is invariant. By

adding appropriate interaction terms of the B-field to the action it is now possible to

achieve a complete cancellation of the reducible anomalies.

2Also (anti)self-dual tensor fields can contribute. Since in our model there is one tensor field of each

type, their effects cancel.
3Anomalies in local Lorentz transformations and in general coordinate transformations are equivalent in

the sense that the anomaly can be shifted from one to the other by local counterterms. We will consider

anomalies in local Lorentz transformations and refer to those as gravitational.
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For T 2/Z2 orbifolds, the total anomaly polynomial I8 is of the form

I8 =
1

2
Ibulk
8 +

∑

f

If
6 δ2(y − yf ) dy5dy6 , (4.4)

where Ibulk
8 is the anomaly polynomial on R

1,3×T 2, and If
6 is the local anomaly polynomial

at the fixed point f . If
6 receives two kinds of contributions: Brane-localized fields and bulk

fields surviving the orbifold projection at this particular fixed point. The latter, however,

contribute with a factor of 1
4 because the orbifold contains four fixed points. The factor 1

2

in (4.4) enters since the fundamental domain of the orbifold is half the one of the torus.

These anomalies can be cancelled by the Green-Schwarz mechanism if I8 is reducible, i.e.,

if it factorizes into a product involving X4. For the components this means

Ibulk
8 = β X4Y4 , If

6 = α Xf
4 Y f

2 . (4.5)

Here Xf
4 follows from X4 by projection onto the local gauge group, and we have pulled out

factors α = i
48(2π)3

and β = −i
16(2π)3

. Since tr R = tr F = 0 for non-Abelian gauge groups,

the localized two-forms Y f
2 can only be linear combinations of U(1) field strengths, which

can be redefined as Y f
2 = cfF f = cfdAf . Af and the corresponding generator are referred

to as the anomalous U(1) at the fixed point f .

If the anomaly polynomial factorizes in the required way, the total anomaly A =
∫

I
(1)
6

descends from (4.4) and is cancelled by variation of the Green-Schwarz action [22],

SGS =

∫ 

−


β

2
Y

(0)
3 + α

∑

f

cfAfδ2(y − yf ) dy5dy6


dB

+


β

4
Y

(0)
3 +

α

3

∑

f

cfAf δ2(y − yf ) dy5dy6


 X

(0)
3



 .

(4.6)

4.2 Bulk anomalies

We now check the cancellation of bulk anomalies in the model at hand. It is convenient

to split the gauge group index as I = (A,u), with A,B, . . . running over the non-Abelian

factors, i.e. SU(6), SU(3) and SO(8), while u, v, . . . = 1, . . . , 5 label the U(1) factors. The

anomaly polynomial for the six-dimensional case is given in ref. [21]. Here we first check

that the irreducible pieces cancel and then show that the remaining parts factorize as

in (4.5).

There are three contributions in the anomaly polynomial which cannot be reducible:

• The most severe constraint arises from the quartic pure gravitational anomaly. The

corresponding term in the anomaly polynomial is

(244 + y − s) tr R4 . (4.7)

It is sensitive only to the number of gauginos y and hyperinos s, which contribute

with opposite signs due to their opposite chiralities, and the gravitino and dilatino.

The necessary condition s − y = 244 is fulfilled in our model, as can be seen from

tables 10 and 11.
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• Quartic non-Abelian anomalies receive contributions from the gaugino in the adjoint

representation which need to be cancelled by opposite-chirality hyperinos. Denoting

the number of hypermultiplets in representation ri of group factor GA by si
A, the

quartic terms are

Tr F 4
A −

∑

i

si
A tr

r
i F 4

A , A = SU(6) ,SU(3) ,SO(8) . (4.8)

Here Tr and tr
r

i denote traces in the adjoint representation and in the representa-

tion ri, respectively. We can convert all traces to the fundamental representation

(denoted simply by tr), which will introduce representation indices, and possibly

terms ∼
(
tr F 2

A

)2
, and finally leads to the following constraints:

SU(6) : 12 + 6s20 − s6 − s6̄ = 0 , (4.9a)

SO(8) :
1

2
s8s +

1

2
s8c − s8 = 0 . (4.9b)

SU(3) does not have a fourth-order Casimir invariant and hence tr F 4
SU(3) does not

give a condition at this point.

• Finally, the (non-Abelian)3-Abelian anomaly has to vanish for reducibility. Again

we convert all traces to the fundamental representation, and have to consider the

U(1) charges of the hypermultiplets. We get two nontrivial conditions for each U(1)

(SO(8) has no third-order Casimir):

SU(6) :
∑

6i

q6i
u −

∑

6̄i

q6̄i
u = 0 , (4.10a)

SU(3) :
∑

3i

q3i
u −

∑

3̄i

q3̄i
u = 0 . (4.10b)

From the U(1) charges in table 11 we see that also these constraints are satisfied.

For the remaining anomaly polynomial we normalize the U(1)’s from table 7 by intro-

ducing t̂u = tu/
√

2|tu|. As shown in appendix B, this leads to a factorization of the bulk

anomaly polynomial which is of the form (4.5):

i (2π)3 Ibulk
8 =

1

16

[
tr R2 − 2 tr F 2

SU(6) − 2 tr F 2
SU(3) − tr F 2

SO(8) −
∑

u

F 2
u

]

×
[
tr R2 −

∑

u,v

βuvFuFv

]

=
1

16
X4 Y4 .

(4.11)

The symmetric coefficient matrix βuv in the t̂u basis is

βuv =




3 −1 0 −1 0

3 0 −1 0

2 0
√

2

4 0

4




. (4.12)
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We conclude that all bulk anomalies of our orbifold model are cancelled by variations of

the terms ∼ Y
(0)
3 in eq. (4.6).

4.3 Brane anomalies

Since our model contains one Wilson line in the SO(4) plane, the spectra at the fixed points

only depend on n2 and not on n′
2, so that we have to evaluate two anomaly polynomials

I0,1
6 in the following.

At a fixed point, there are no gravitational anomalies, and so the only irreducible

contributions are non-Abelian cubic ones. Matter now comes in chiral multiplets which can

have both chiralities and thus contribute with opposite signs. Furthermore, the anomaly

induced by bulk fields surviving the projection is suppressed by a factor of 1
4 with respect

to the contributions from localized fields. Taking this into account, the cubic non-Abelian

anomalies are of the form

1

4

∑

bulk r

(
s
(+)r
A − s

(−)r
A

)
trr F 3

A −
∑

loc r

s
(−)r
A trr F 3

A , (4.13)

where the sum is over representations r of the local group factor A, and the s
(+)r
A and

s
(−)r
A denote the number of multiplets in that representation with positive and negative

chirality, respectively. We take the localized fields to be left-handed. Using tables 12 to

17, one finds that the model contains no irreducible local anomalies. Vector multiplets do

not contribute to anomalies, as they are in a real representation of the gauge group, and

neither do the hypermultiplet remnants of 6D vector multiplets, since they come in left-

and right-handed form.

For the local reducible anomalies we find the following factorization at n2 = 0, 1

(cf. appendix B):

i(2π)3I0
6 = − 1

48

[(
tr R2

)
− 2

(
tr F 2

SU(5)

)
− 2

(
tr F 2

SU(3)

)
(4.14)

−
(
tr F 2

SO(8)

)
−

6∑

u=1

F 2
u

]
×

(
tr0 t̂0an

)
F 0 ,

i(2π)3I1
6 = − 1

48

[(
tr R2

)
− 2

(
tr F 2

SU(2)

)
− 2

(
tr F 2

SU(4)

)
− 2

(
tr F 2

SU(2)′

)
(4.15)

−2
(
tr F 2

SU(4)′

)
−

8∑

v=1

F 2
v

]
×

(
tr1 t̂1an

)
F 1 .

The traces of the anomalous U(1)’s are the sums of the charges of the fields present at

the given fixed point, and again the contributions of surviving bulk fields are weighted

with a factor of 1
4 . The indices u, v in the formulae above run over a basis spanned by

the anomalous U(1) and orthogonal generators, t̂f1 ≡ t̂fan, t̂fan · t̂fu = 0, (u > 1). The

normalization is chosen such that all Abelian factors have level 1, namely t̂fu = tfu/
√

2|tfu|.
The factorization is of the form (4.5) such that we conclude that all anomalies of our model

are cancelled by the localized part of the Green-Schwarz term (4.6).
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Equations (4.14) and (4.15) reveal that due to the presence of one Wilson line there

are two distinct anomalous U(1) factors t0an and t1an in the model, one for each inequivalent

fixed point. For the (unnormalized) anomalous generators from table 7 we find the following

traces:

tr0 t0an = 2|t0an|2 = 148 , tr1 t1an = |t1an|2 = 80 . (4.16)

The 4D anomalous U(1) follows from integrating the Green-Schwarz term over the internal

dimensions. As can be seen from (4.6), this amounts to summing the normalized local

U(1)’s. The four-dimensional anomaly polynomial again is of the form (4.5), so we can

deduce the anomalous U(1) in four dimensions from

tr4d t
(4d)
an

|t(4d)
an |2

t(4d)
an = 2

(
tr0 t0an
|t0an|2

t0an +
tr1 t1an
|t1an|2

t1an

)
. (4.17)

Here tr4d denotes the trace over the low-energy spectrum, i.e. zero modes of bulk fields

and localized fields, but excluding bulk fields which only survive at n2 = 0 or n2 = 1.

Note that the factor of 1
4 included in the definitions of tr0 and tr1 ensures that zero mode

contributions are counted only once. Thus we find the anomalous generator t
(4d)
an from [18]

with tr t
(4d)
an = 12 |t(4d)

an |2 = 88 as

t(4d)
an =

1

6

(
2 t0an + t1an

)
. (4.18)

So all appearing anomalies have been cancelled, either among themselves or by the

Green-Schwarz mechanism. We would like to emphasize that there is no free parameter

involved: the fields and gauge groups are fixed, as well as the transformation property of

BMN , which is the only available antisymmetric tensor field which can cancel anomalies.

Hence the way in which the different sectors combine in the correct way appears highly

non-trivial.

5. Decoupling of exotic states

Let us now consider the decoupling of states with exotic standard model quantum numbers.

These are the SU(5) 5-plets of bulk hypermultiplets which originate from the T2/T4- and

the untwisted sector, and the SU(2) doublets and singlets with non-zero hypercharge from

the T1/T5- and T3-sectors at the fixed points n2 = 1. Note that no exotic matter is located

at the fixed points n2 = 0. All the exotic 5-plets and most of the exotic matter at n2 = 1

can be decoupled by VEVs of just a few standard model singlet fields. This decoupling

takes place locally at one of the fixed points, which is a crucial difference compared to

previous discussions of decoupling in four dimensions [18, 19].

The N = 2 hypermultiplets H = (HL,HR) consist of pairs of N = 1 left- and right-

chiral multiplets either from the T2 and T4 twisted sectors, or from the untwisted sector.

The charge conjugate left-chiral multiplet Hc
R has the opposite gauge quantum numbers

as HL. Hence the SU(5) 5- and 5̄-hypermultiplets contain the exotic N = 1 left-chiral

multiplets 5 and 5̄
c
.
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5 5̄
c
0 51 5̄ 5c

0 5̄1 5̄2 5c
2

SU(3) × SU(2) (1,2) (3, 1) (1,2) (1,2) (3̄, 1) (1,2) (3̄, 1) (1,2)

U(1)B−L 0 −2
3 0 0 2

3 0 −1
3 −1

MSSM Hu Hd d3 l3

Table 8: The remaining 5’s and 5̄’s after the decoupling through W1. The SU(3) × SU(2) repre-

sentations, B − L charges and MSSM identification refer to the zero modes.

The products 5n3
5c

n3
and 5̄n3

5̄
c
n3

, n3 = 0, 1, 2, are total gauge singlet N = 1 chi-

ral multiplets. They do carry, however, non-zero R-charges, R = (−1,−1, 0) (cf. ap-

pendix A.1). One easily verifies (cf. tables 9, 12 and 16 in the appendices A.1 and A.3)

that the product Ȳ c
0 S1S5 of standard model singlet fields is a total gauge singlet with R-

charges R = (0, 0,−1). S1 and S5 are oscillator states localized at the fixed points n2 = 0.

One therefore obtains the local N = 1 superpotential terms

W1 = Ȳ c
0 S1S5

(
505

c
0 + 5̄05̄

c
0 + 515

c
1 + 5̄15̄

c
1 + 525

c
2 + 5̄25̄

c
2

)
. (5.1)

All terms are total gauge singlets with R-charges R = (−1,−1,−1). Hence, the H-

momentum rules are satisfied, as are the space selection rules (cf. [18]).

From eq. (5.1) we conclude that a large vacuum expectation value
〈
Ȳ c

0 S1S5

〉
removes

6 pairs of (5, 5̄)-plets4 from the low energy spectrum. Since we have 3 positive parities for

each value of n3 (cf. tables 3 and 12), 6 5- or 5̄-plets remain. The mass terms are localized

at the fixed points n2 = 0. Bulk mass terms between hypermultiplets are forbidden by

N = 2 supersymmetry.

Inspection of tables 3 and 12 shows that from the T2-, T4- and untwisted sectors three

5’s and five 5̄’s remain: 5, 5̄, 5c
0, 5̄

c
0, 51, 5̄1, 5c

2, 5̄2. The further decoupling is motivated

by phenomenological arguments and by simplicity. The projection condition at the fixed

points n2 = 1 leave as 4D zero modes from each 5 and 5̄ either an SU(3) triplet or an

SU(2) doublet. With respect to the U(1)B−L generator identified in [18],

tB−L =

(
0, 1, 1, 0, 0,−2

3
,−2

3
,−2

3

) (
1

2
,
1

2
,
1

2
,−1

2
, 0, 0, 0, 0

)
, (5.2)

these massless states have the B − L charges listed in table 8. This suggests to decouple

5̄
c
0 and 5c

0, which is possible with a local coupling at the fixed point n2 = 0,

W2 = Y0S1S5 5c
05̄

c
0 , (5.3)

and a large VEV 〈Y0S1S5〉.
From the remaining 5-plets, either 5 or 51 can be chosen as Higgs field Hu. A large

top-quark coupling is obtained for 5 ⊃ Hu. 51 can be easily decoupled using the 6D gauge

4When the distinction between T2–T4 and untwisted sector does not matter, we collectively denote 5

and 5̄
c

by 5, and 5̄ and 5
c by 5̄.
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coupling with the chiral multiplet 5̄ of the SU(6) 35-plet,

WH ⊃
√

2g
(
X055c

0 + X̄05̄5̄
c
0 + Xc

1515̄ + X̄c
15̄15 + X255c

2 + X̄c
25̄25

)
, (5.4)

with a large VEV 〈X̄c
1〉. The remaining 5̄-plets 5c

2 and 5̄1 then correspond to a lepton

doublet and the Higgs field Hd, respectively. The chosen vacuum is similar to the B − L

conserving vacuum discussed in [18]. It corresponds to partial gauge-Higgs unification for

Hu. If one chooses to decouple 5 instead of 51, one has no gauge-Higgs unification. Alter-

natively, one can also keep 5 and 5̄ massless, corresponding to full gauge-Higgs unification.

All other exotic states are localized at n2 = 1. The SU(2) doublets Mi and some of

the SU(2) singlets S±
i can already be decoupled by cubic terms,

W3 = Z̄c
1M1M4 + Zc

0M2M3 , (5.5)

W4 = Ȳ c
2

(
S+

2 S−
1 + S+

3 S−
4

)
+ Z2

(
S+

4 S−
5 + S+

4 S
′−
5

)

+ Z̄2

(
S−

3 S+
6 + S−

3 S
′+
6

)
+ U c

1

(
S+

6 S−
5 + S

′+
6 S

′−
5

)
,

(5.6)

with large VEVs 〈Z̄c
1〉, 〈Zc

0〉, 〈Ȳ c
2 〉, 〈Z2〉, 〈U c

1〉. The decoupling of the remaining exotic

singlets with hypercharge, S+
1 , S−

2 , S+
5 , S−

6 , S−
7 , S+

7 requires higher dimensional operators

(cf. [18, 19]), which we will not discuss further in this paper.

After the decoupling of altogether 8 pairs of (5, 5̄)-plets we are left with two localized

families,

(n2, n
′
2) = (0, 0) : 5̄(1), 10(1); (n2, n

′
2) = (0, 1) : 5̄(2), 10(2) , (5.7)

together with two further families and a pair of Higgs doublets in the bulk:

5̄(3) ≡ 5c
2, 10(3) ≡ 10; 5̄(4) ≡ 5̄2, 10(4) ≡ 10

c
; Hu ≡ 5, Hd ≡ 5̄1 . (5.8)

At the fixed points n2 = 0 these chiral N = 1 multiplets form a local SU(5) GUT theory.

The corresponding Yukawa couplings will be discussed in the following section. From the

two bulk families, half of the states are projected out by the projection conditions at n2 = 1,

and together they give rise to one family of zero modes (cf. eq. (3.9) and table 8).

Note that the decoupling terms (5.1), (5.3), (5.5) and (5.6) require VEVs of both bulk

and localized fields. The localized singlets S1 and S5 correspond to oscillator modes. As

we will see in section 7, bulk and brane field backgrounds are typically induced by local

Fayet-Iliopoulos (FI) terms. The non-vanishing VEVs of localized fields are often related

to a resolution of the orbifold singularities [31, 32]. However, a study of the blow-up of

the considered orbifold to a smooth manifold and the geometrical interpretation of the

localized VEVs is beyond the scope of this work.

6. Yukawa couplings

In the previous section we have obtained four quark-lepton families transforming as

(5̄(i) + 10(i)) under SU(5), where i is a generation index. Two families are localized at

the branes (i = 1, 2) and two are bulk fields. The corresponding superpotential reads

WYuk = C
(u)
ij 10(i)10(j)Hu + C

(d)
ij 5̄(i)10(j)Hd , (6.1)
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where the couplings C
(u)
ij and C

(d)
ij are composed of singlet fields such that the superpoten-

tial obeys the string selection rules (cf. [18]).

As an example, we consider a vacuum where in addition to the fields

Ȳ c
0 , S1, S5, Y0,X

c
1, Z̄

c
1, Z

c
0, Ȳ

c
2 , Z2, Z̄2, U

c
1 , (6.2)

used in section 5 for decoupling, only the singlets

Y c
0 , Y1, Ȳ1, S3, S4, S7 (6.3)

aquire non-zero VEVs. After a straightforward calculation, we find that up to O(8) in the

fields, this vacuum leads to couplings

C
(u)
ij =




a1 0 a2 a3

0 a1 a2 a3

a2 a2 0 g

a3 a3 g a4


 , C

(d)
ij =




0 0 b1 b2

0 0 b1 b2

b3 b3 b4 0

b5 b5 b6 b2
5


 , (6.4)

with

a1 = 〈Y c
0 Ȳ c

0 S1S3〉, a2 = 〈
(
Ȳ c

0 S1

)2
S5〉, a3 = 〈Y c

0 Ȳ c
0 S1S3S5〉, (6.5)

a4 = 〈Y c
0 Ȳ c

0 S1S3 (S5)
2〉, (6.6)

b1 = 〈Y0Ȳ1 (S5)
3 (S7)

2〉, b2 = 〈Xc
1Ȳ

c
2 U c

1S7〉, b3 = 〈Xc
1Ȳ1S3 (S5S7)

2〉, (6.7)

b4 = 〈(Xc
1)

2 Ȳ1U
c
1S4S7〉, b5 = 〈S5〉, b6 = 〈(Xc

1)
2 Y1S1S7〉 . (6.8)

Note that the chosen vacuum yields non-vanishing Yukawa couplings while the µ-term is

only generated at higher order.

The Yukawa couplings (6.1) are SU(5) invariant, hence we have obtained an SU(5)

GUT model. Note that the SU(5) Yukawa interactions are local since the fields Si are

localized at the fixed points n2 = 0, i.e., we have a local SU(5) GUT model. The only

exception is C
(u)
34 = C

(u)
43 = g, which is a remnant of the SU(6) bulk gauge interaction. It

is a consequence of the partial gauge-Higgs unification of the present model, which implies

a phenomenologically attractive large top Yukawa coupling.

We can now proceed and deduce the corresponding Yukawa couplings in four dimen-

sions. As described in section 5, half of each of the two bulk families is projected out by the

additional Z2 orbifold condition at the second pair of fixed points (n2 = 1). The remaining

fields from the split bulk matter multiplets then form the content of the third standard

model family. The 4D Yukawa terms are

WYuk = Y
(u)
ij uc

iqjHu + Y
(d)
ij dc

iqjHd + Y
(l)
ij lie

c
jHd , (6.9)

where i, j = 1, 2, 3 is a family index, and

Y
(u)
ij =




a1 0 a3

0 a1 a3

a2 a2 g


 , Y

(d)
ij =




0 0 b2

0 0 b2

b5 b5 b7


 , Y

(l)
ij =




0 0 b1

0 0 b1

b3 b3 b4


 . (6.10)
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5̄⊕ 10

5̄⊕ 10

2 × 5̄, 2 × 10

5, 5̄

exotics

exotics

Figure 2: The orbifold T 2/Z2. The blue dots (on the left) label the fixed points with n2 = 0, the

red ones (right) have n2 = 1. Two quark-lepton generations live at the n2 = 0 fixed points, the

third one originates from two SU(5) 5̄ and 10 multiplets in the bulk, half of which is projected out

due to the boundary conditions at n2 = 1.

The Yukawa matrices for down quarks and leptons are different, although they originate

from SU(5) invariant couplings of the 6D theory. This is due to the split multiplets which

form the third quark-lepton family. In this way the mostly unsuccessful SU(5) predic-

tions for fermion masses are avoided. However, one also loses the successful prediction

mb(MGUT) ≃ mτ (MGUT).

The obtained local SU(5) GUT model is phenomenologically not viable. Not only are

electron and down-quark massless, which may be corrected by higher powers of singlet

VEVs, but the main problem are R-parity violating Yukawa couplings leading to rapid

proton decay, which we have not listed. However, the present model is just an example of

a large class of models [19], and it is likely that the phenomenology can be improved. In

the above discussion we have also ignored neutrino masses which can be generated by a

seesaw mechanism typically involving many singlet fields [33].

7. Supersymmetric vacua

In the previous sections we have discussed phenomenologically wanted vacuum configura-

tions, i.e. expectation values of singlet fields, which decouple states with exotic quantum

numbers and generate Yukawa couplings for quarks and leptons. The analysis and classi-

fication of these vacua is a difficult problem. In particular, one has to show that N = 1

supersymmetry remains unbroken in four dimensions. For the present model the conditions

for vanishing F - and D-terms have been discussed in [18]. A crucial role is played by the

Fayet-Iliopoulos D-term of the anomalous U(1), which drives fields away from zero (cf. [34]).

In this paper we are studying the case where two of the compact dimensions are larger

than the other four. Such an ansatz assumes that the size of the large dimensions can be

stabilized at a scale 1/MGUT ≫ 1/Mstring. To prove this one has to find supersymmetric
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vacua of the effective 6D field theory which incorporates Kaluza-Klein states with masses

between MGUT and Mstring.

As we saw in section 4, the 6D theory has different Fayet-Iliopoulos terms at the

inequivalent fixed points in the SO(4)-plane (cf. (4.17)),

LFI =
∑

f

ξf δ2(y − yf)
(
−Df

3 + F f
56

)
, (7.1)

where at f = (n2, n
′
2),

ξ(0,0) = ξ(0,1) =
gM2

P

384π2

tr0 t0an

|t0an|2
, ξ(1,0) = ξ(1,1) =

gM2
P

384π2

tr1 t1an

|t1an|2
. (7.2)

Integrating over the two compact dimensions reproduces the 4D Fayet-Iliopoulos term

of [18].

In the case of flat space, localized FI terms have been studied in [22], and it has been

shown that they lead to an instability of the bulk fields and to spontaneous localization

towards the fixed points. For our 6D supergravity theory this analysis has to be extended to

include the gravitational, antisymmetric tensor and dilaton fields. In general, one expects

warped solutions, and it is not clear whether N = 1 supersymmetry remains unbroken in

four dimensions. These questions are beyond the scope of the present paper and will be

studied elsewhere.

In the following we will only check whether the VEVs selected in sections 5 and 6

correspond to a supersymmetric vacuum for an isotropic orbifold, where the SO(4)-, SU(3)-

and G2-planes all have string size, and the different FI terms are approximated by a single FI

term in four dimensions. As discussed in [18], vanishing D-terms are guaranteed if all fields

are part of gauge invariant monomials except one which carries negative net anomalous

charge. These conditions are indeed satisfied for the vacuum chosen in sections 5 and 6.

An explicit example of gauge invariant monomials is

X3X
c
3, Xc

4S1S5, Xc
5X

c
12Y

c
1 Y c

4 S2
7 ,Xc

5X8Y5Y6S4S7, Xc
5X8X

c
12Z

c
1S3S7 , (7.3)

supplemented by

Xc
3(X

c
5X7)

2Y8 (7.4)

which has anomalous charge −22/3.

Since the superpotential of the standard model singlet fields is unknown, we cannot

prove that the F -terms vanish for the chosen vacuum. We expect, however, a simplification

in the analysis of the superpotential in 6D as compared to 4D, since the superpotential is

generated locally at the fixed points where one has larger unbroken symmetries than in the

4D effective theory.

It will be very interesting to see whether a supersymmetric vacuum of an isotropic

orbifold can be obtained as limiting case from an anisotropic orbifold. The different FI

terms at the orbifold fixed points may play a crucial role in generating the anisotropy, and

it is intriguing that the mass scale of the FI terms is of the order of the grand unification

scale, MP/
√

384π2 ∼ MGUT.
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8. Outlook

We have constructed a 6D supergravity theory as intermediate step in the compactification

of the heterotic string to the supersymmetric standard model in four dimensions. The

theory has N = 2 supersymmetry and one tensor multiplet, and it has a large number of

gravitational, gauge and mixed anomalies, all of which are cancelled by the Green-Schwarz

mechanism. The theory is compactified from six to four dimensions on a Z2 orbifold with

two inequivalent pairs of fixed points with unbroken SU(5) and SU(2)×SU(4) symmetry,

respectively.

In addition to the cancellation of anomalies, we have been particularly interested in the

decoupling of exotic states and the emergence of an intermediate SU(5) GUT. Compared

to the 4D theory the decoupling is more transparent due to the larger symmetries, N = 2

supersymmetry in the bulk and larger gauge symmetries at the orbifold fixed points. It is

remarkable that most exotic states can be decoupled with VEVs of a few standard model

singlet fields at the orbifold fixed points.

A very interesting feature of the theory is the emergence of an intermediate SU(5)

GUT model. Two quark-lepton families are localized at the SU(5) branes and two further

families, together with a pair of 5⊕ 5̄ plets are bulk fields. SU(5) is broken by the presence

of the SU(2) × SU(4) branes. This generates a pair of Higgs doublets as split multiplets.

Split multiplets of the two bulk quark-lepton families also form the third quark-lepton

family, with the standard model quantum numbers of one 5̄-plet and one 10-plet. Due to

the presence of the split multiplets, the Yukawa couplings of the 4D theory break SU(5)

explicitly, thus avoiding unsuccessful SU(5) predictions of ordinary 4D GUTs.

The 6D theory originally has a large number of 5 ⊕ 5̄ pairs, most of which are

decoupled. As discussed in section 5, the identification of the Higgs fields depends on

the choice of the vacuum configuration, and one can have no, partial or full gauge-Higgs

unification. Since there is no clear distinction between matter and Higgs fields, one

generically expects large R-parity breaking Yukawa couplings leading to fast proton decay,

as it is indeed the case for the vauum chosen in sections 5 and 6. However, since the

considered model is just one example of a large class of similar models [19], it is likely

that the phenomenology can be improved.

On the theoretical side, the main open problems concerns the stabilization of extra

dimensions at a scale 1/MGUT ≫ 1/Mstring and the existence of corresponding vacua with

unbroken N = 1 supersymmetry. We hope to address these questions elsewhere.

A. States

A.1 R-charges

The R-charges of a chiral multiplet are defined as Ri = qi
sh − (Ñ − Ñ∗)i, where qi

sh is the

shifted H-momentum of the scalar and the vectors Ñ and Ñ∗ denote oscillator numbers of

left-moving fields in zi and z̄i directions, respectively (cf. table 9).
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Sector State Excitation R1 R2 R3

U U c
1 0 −1 0

U U2, U3, U4 −1 0 0

T1 All −1
6 −1

3 −1
2

T ∗
1 S1, S2, S7 Ñ∗ = (1, 0, 0) 5

6 −1
3 −1

2

T ∗
1 S4, S6 Ñ∗ = (2, 0, 0) 11

6 −1
3 −1

2

T ∗
1 S3, S5 Ñ∗ = (0, 1, 0) −1

6
2
3 −1

2

T2 HL −1
3 −2

3 0

T ∗
2 Y ∗

n3
Ñ = (0, 1, 0) −1

3 −5
3 0

T ∗
2 Y

′∗
n3

Ñ∗ = (1, 0, 0) 2
3 −2

3 0

T3 All −1
2 0 −1

2

T4 Hc
R −2

3 −1
3 0

T ∗
4 Y ∗c

n3
Ñ∗ = (0, 1, 0) −2

3
2
3 0

T ∗
4 Y

′∗c
n3

Ñ = (1, 0, 0) −5
3 −1

3 0

Table 9: R-charges and oscillator excitations of left-handed states. U denotes the untwisted sector

and a star represents non-vanishing oscillator numbers.

Multiplet Representation t1 t2 t3 t4 t5 #

Graviton 1
Tensor 1
Hyper 2
Vector (35; 1, 1) 35

(1;8, 1) 8
(1; 1,28) 28

5 × (1; 1, 1) 5
Hyper (20; 1, 1) −1

2
1
2 0 0 0 20

(1; 1,8) 0 0 0 −1 0 8
(1; 1,8s) 0 0 0 1

2
3
2 8

(1; 1,8c) 0 0 0 1
2 −3

2 8
(1; 1, 1) 1

2
1
2 −3 0 0 1

(1; 1, 1) −1 −1 0 0 0 1
(1; 1, 1) 1 −1 0 0 0 1
(1; 1, 1) 1

2
1
2 3 0 0 1

Table 10: The massless spectrum of the 6D theory arising from the untwisted sector. There are

76 vector multiplets and 50 hypermultiplets. The second column refers to the representations with

respect to SU(6)×SU(3)×SO(8), t1–t5 are the charges with respect to the U(1) factors of the bulk

gauge group. The first three multiplets arise from the 10D gravitational sector and are complete

gauge singlets.

A.2 Bulk states

In tables 10 and 11 we list the states of the effective 6D bulk theory. They are obtained

from the heterotic string by an Z3 orbifold projection with one Wilson line, as described

in section 2.
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Sector Representation n3 t1 t2 t3 t4 t5 #

T2/T4 3 × (6; 1, 1) 0 0 −1
3 1 2

3 0 18

3 × (6̄; 1, 1) 0 0 −1
3 −1 2

3 0 18

3 × (1; 1, 1) 0 −1 −1
3 0 2

3 0 3

3 × (1; 1, 1) 0 1 −1
3 0 2

3 0 3

T2/T4 3 × (1;3, 1) 0 0 2
3 0 −1

3 1 9

3 × (1; 3̄, 1) 0 0 2
3 0 −1

3 −1 9

3 × (1; 1,8) 0 0 2
3 0 −1

3 0 24

T2/T4
∗ 6 × (1; 1, 1) 0 0 2

3 0 2
3 0 6

T2/T4 3 × (6; 1, 1) 1 0 −1
3 −1 −1

3 −1 18

3 × (6̄; 1, 1) 1 1
2

1
6 0 −1

3 −1 18

3 × (1; 1, 1) 1 0 2
3 −2 −1

3 −1 3

3 × (1; 1, 1) 1 1
2 −5

6 1 −11
3 −1 3

T2/T4 3 × (1;3, 1) 1 −1
2

1
6 1 2

3 0 9

3 × (1; 3̄, 1) 1 −1
2

1
6 1 −1

3 1 9

3 × (1; 1,8s) 1 −1
2

1
6 1 1

6
1
2 24

T2/T4
∗ 6 × (1; 1, 1) 1 −1

2
1
6 1 −1

3 −1 6

T2/T4 3 × (6; 1, 1) 2 1
2

1
6 0 −1

3 1 18

3 × (6̄; 1, 1) 2 0 −1
3 1 −1

3 1 18

3 × (1; 1, 1) 2 1
2 −5

6 −1 −1
3 1 3

3 × (1; 1, 1) 2 0 2
3 2 −1

3 1 3

T2/T4 3 × (1;3, 1) 2 −1
2

1
6 −1 −1

3 −1 9

3 × (1; 3̄, 1) 2 −1
2

1
6 −1 2

3 0 9

3 × (1; 1,8c) 2 −1
2

1
6 −1 1

6 −1
2 24

T2/T4
∗ 6 × (1; 1, 1) 2 −1

2
1
6 −1 −1

3 1 6

Table 11: The massless spectrum of the 6D theory arising from the T2 and T4 sectors. There are

270 hypermultiplets. The states are localized in the G2 and SU(3) planes, which contain three fixed

points each. The equivalent G2 fixed points yield the multiplicity factor three, localization in the

SU(3) plane is given by n3. T2/T4* states have non-vanishing oscillator numbers.

A.3 States at the fixed points

In tables 12, 13, 14, 15, 16 and 17 we list the states at the fixed points n2 = 0, 1. These

involve bulk states from the T2/T4 and the untwisted sector (see tables 3–6) and localized

states from the sectors T1/T5 and T3. Xi, X̄i, Yi, Ȳi, Zi, Z̄i and Ui are bulk fields; S1–S8

are localized fields.
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J
H
E
P
0
9
(
2
0
0
7
)
1
1
3

Bulk n2 = 0 n3 HL HR t06 t1 t2 t3 t4 t5

(6; 1, 1) (5; 1, 1) 0 −, +,− +,−, + −1 0 −
1

3
1 2

3
0

(1; 1, 1) 0 +,−, + −, +,− 5 0 −
1

3
1 2

3
0 X0

(6̄; 1, 1) (5̄; 1, 1) 0 −, +,− +,−, + 1 0 −
1

3
−1 2

3
0

(1; 1, 1) 0 +,−, + −, +,− −5 0 −
1

3
−1 2

3
0 X̄0

(1; 1, 1) (1; 1, 1) 0 +,−, + −, +,− 0 1 −
1

3
0 2

3
0 Y0

(1; 1, 1) (1; 1, 1) 0 +,−, + −, +,− 0 −1 −
1

3
0 2

3
0 Ȳ0

(1;3, 1) (1; 3, 1) 0 −, +,− +,−, + 0 0 2

3
0 −

1

3
1

(1; 3̄, 1) (1; 3̄, 1) 0 −, +,− +,−, + 0 0 2

3
0 −

1

3
−1

(1; 1, 8) (1; 1,8) 0 −, +,− +,−, + 0 0 2

3
0 −

1

3
0

(6; 1, 1) (5; 1, 1) 1 +,−, + −, +,− −1 0 −
1

3
−1 −

1

3
−1

(1; 1, 1) 1 −, +,− +,−, + 5 0 −
1

3
−1 −

1

3
−1 X1

(6̄; 1, 1) (5̄; 1, 1) 1 +,−, + −, +,− 1 1

2

1

6
0 −

1

3
−1

(1; 1, 1) 1 −, +,− +,−, + −5 1

2

1

6
0 −

1

3
−1 X̄1

(1; 1, 1) (1; 1, 1) 1 +,−, + −, +,− 0 0 2

3
−2 −

1

3
−1 Y1

(1; 1, 1) (1; 1, 1) 1 +,−, + −, +,− 0 1

2
−

5

6
1 −

1

3
−1 Ȳ1

(1;3, 1) (1; 3, 1) 1 −, +,− +,−, + 0 −
1

2

1

6
1 2

3
0

(1; 3̄, 1) (1; 3̄, 1) 1 −, +,− +,−, + 0 −
1

2

1

6
1 −

1

3
1

(1; 1, 8s) (1; 1, 8s) 1 +,−, + −, +,− 0 −
1

2

1

6
1 1

6

1

2

(6; 1, 1) (5; 1, 1) 2 −, +,− +,−, + −1 1

2

1

6
0 −

1

3
1

(1; 1, 1) 2 +,−, + −, +,− 5 1

2

1

6
0 −

1

3
1 X2

(6̄; 1, 1) (5̄; 1, 1) 2 +,−, + −, +,− 1 0 −
1

3
1 −

1

3
1

(1; 1, 1) 2 −, +,− +,−, + −5 0 −
1

3
1 −

1

3
1 X̄2

(1; 1, 1) (1; 1, 1) 2 +,−, + −, +,− 0 0 2

3
2 −

1

3
1 Y2

(1; 1, 1) (1; 1, 1) 2 −, +,− +,−, + 0 1

2
−

5

6
−1 −

1

3
1 Ȳ2

(1;3, 1) (1; 3, 1) 2 +,−, + −, +,− 0 −
1

2

1

6
−1 −

1

3
−1

(1; 3̄, 1) (1; 3̄, 1) 2 +,−, + −, +,− 0 −
1

2

1

6
−1 2

3
0

(1; 1,8c) (1; 1, 8c) 2 −, +,− +,−, + 0 −
1

2

1

6
−1 1

6
−

1

2

Table 12: Local decomposition of ground states from the T2/T4 sector at n2 = 0. The three

parities for chiral hypermultiplet components HL, HR correspond to to qγ = 0, 1
2 , 1.
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J
H
E
P
0
9
(
2
0
0
7
)
1
1
3

Bulk n2 = 1 n3 HL HR t16 t7 t8 t1 t2 t3 t4 t5

(6; 1, 1) (1,4; 1, 1) 0 −,+,− +,−,+ 5 0 0 0 −
1

3
1 2

3
0

(2, 1; 1, 1) 0 +,−, + −, +,− −10 0 0 0 −
1

3
1 2

3
0

(6̄; 1, 1) (1, 4̄; 1, 1) 0 −,+,− +,−,+ −5 0 0 0 −
1

3
−1 2

3
0

(2, 1; 1, 1) 0 +,−, + −, +,− 10 0 0 0 −
1

3
−1 2

3
0

(1; 1, 1) (1, 1; 1, 1) 0 +,−, + −, +,− 0 0 0 1 −
1

3
0 2

3
0 Y0

(1; 1, 1) (1, 1; 1, 1) 0 +,−, + −, +,− 0 0 0 −1 −
1

3
0 2

3
0 Ȳ0

(1;3, 1) (1, 1; 2, 1) 0 +,−, + −, +,− 0 1 0 0 2

3
0 −

1

3
1

(1, 1; 1, 1) 0 −,+,− +,−,+ 0 −2 0 0 2

3
0 −

1

3
1 Z0

(1; 3̄, 1) (1, 1; 2, 1) 0 −,+,− +,−,+ 0 −1 0 0 2

3
0 −

1

3
−1

(1, 1; 1, 1) 0 +,−, + −, +,− 0 2 0 0 2

3
0 −

1

3
−1 Z̄0

(1; 1, 8) (1, 1; 1,4) 0 +,−, + −, +,− 0 0 −1 0 2

3
0 −

1

3
0

(1, 1; 1, 4̄) 0 −,+,− +,−,+ 0 0 1 0 2

3
0 −

1

3
0

(6; 1, 1) (1,4; 1, 1) 1 −,+,− +,−,+ 5 0 0 0 −
1

3
−1 −

1

3
−1

(2, 1; 1, 1) 1 +,−, + −, +,− −10 0 0 0 −
1

3
−1 −

1

3
−1

(6̄; 1, 1) (1, 4̄; 1, 1) 1 −,+,− +,−,+ −5 0 0 1

2

1

6
0 −

1

3
−1

(2, 1; 1, 1) 1 +,−, + −, +,− 10 0 0 1

2

1

6
0 −

1

3
−1

(1; 1, 1) (1, 1; 1, 1) 1 +,−, + −, +,− 0 0 0 0 2

3
−2 −

1

3
−1 Y1

(1; 1, 1) (1, 1; 1, 1) 1 +,−, + −, +,− 0 0 0 1

2
−

5

6
1 −

1

3
−1 Ȳ1

(1;3, 1) (1, 1; 2, 1) 1 −,+,− +,−,+ 0 1 0 −
1

2

1

6
1 2

3
0

(1, 1; 1, 1) 1 +,−, + −, +,− 0 −2 0 −
1

2

1

6
1 2

3
0 Z1

(1; 3̄, 1) (1, 1; 2, 1) 1 +,−, + −, +,− 0 −1 0 −
1

2

1

6
1 −

1

3
1

(1, 1; 1, 1) 1 −,+,− +,−,+ 0 2 0 −
1

2

1

6
1 −

1

3
1 Z̄1

(1; 1, 8s) (1, 1; 1,4) 1 +,−, + −, +,− 0 0 1 −
1

2

1

6
1 1

6

1

2

(1, 1; 1, 4̄) 1 −,+,− +,−,+ 0 0 −1 −
1

2

1

6
1 1

6

1

2

(6; 1, 1) (1,4; 1, 1) 2 +,−, + −, +,− 5 0 0 1

2

1

6
0 −

1

3
1

(2, 1; 1, 1) 2 −,+,− +,−,+ −10 0 0 1

2

1

6
0 −

1

3
1

(6̄; 1, 1) (1, 4̄; 1, 1) 2 +,−, + −, +,− −5 0 0 0 −
1

3
1 −

1

3
1

(2, 1; 1, 1) 2 −,+,− +,−,+ 10 0 0 0 −
1

3
1 −

1

3
1

(1; 1, 1) (1, 1; 1, 1) 2 −,+,− +,−,+ 0 0 0 0 2

3
2 −

1

3
1 Y2

(1; 1, 1) (1, 1; 1, 1) 2 −,+,− +,−,+ 0 0 0 1

2
−

5

6
−1 −

1

3
1 Ȳ2

(1;3, 1) (1, 1; 2, 1) 2 −,+,− +,−,+ 0 1 0 −
1

2

1

6
−1 −

1

3
−1

(1, 1; 1, 1) 2 +,−, + −, +,− 0 −2 0 −
1

2

1

6
−1 −

1

3
−1 Z2

(1; 3̄, 1) (1, 1; 2, 1) 2 −,+,− +,−,+ 0 −1 0 −
1

2

1

6
−1 2

3
0

(1, 1; 1, 1) 2 +,−, + −, +,− 0 2 0 −
1

2

1

6
−1 2

3
0 Z̄2

(1; 1,8c) (1, 1; 1,6) 2 −,+,− +,−,+ 0 0 0 −
1

2

1

6
−1 1

6
−

1

2

(1, 1; 1, 1) 2 +,−, + −, +,− 0 0 2 −
1

2

1

6
−1 1

6
−

1

2
Z′

2

(1, 1; 1, 1) 2 +,−, + −, +,− 0 0 −2 −
1

2

1

6
−1 1

6
−

1

2
Z̄′

2

Table 13: Local decomposition of states from the T2/T4 sector at n2 = 1. The three parities for

chiral hypermultiplet components HL, HR correspond to to qγ = 0, 1
2 , 1.
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J
H
E
P
0
9
(
2
0
0
7
)
1
1
3

Bulk n2 = 0 n3 HL HR t06 t1 t2 t3 t4 t5

(1; 1, 1) (1; 1, 1) 0 −,+,− +,−, + 0 0 2

3
0 2

3
0 Y ∗

0

(1; 1, 1) (1; 1, 1) 0 +,−, + −,+,− 0 0 2

3
0 2

3
0 Y

′
∗

0

(1; 1, 1) (1; 1, 1) 1 −,+,− +,−, + 0 −
1

2

1

6
1 −

1

3
−1 Y ∗

1

(1; 1, 1) (1; 1, 1) 1 +,−, + −,+,− 0 −
1

2

1

6
1 −

1

3
−1 Y

′
∗

1

(1; 1, 1) (1; 1, 1) 2 +,−, + −,+,− 0 −
1

2

1

6
-1 −

1

3
1 Y ∗

2

(1; 1, 1) (1; 1, 1) 2 −,+,− +,−, + 0 −
1

2

1

6
-1 −

1

3
1 Y

′
∗

2

Table 14: Local decomposition of excited states from the T2/T ∗

4 sector at n2 = 0. The three

parities for chiral hypermultiplet components HL, HR correspond to to qγ = 0, 1
2 , 1. The singlets

Y ∗

n3
have oscillator numbers Ñ = (0, 1, 0), the Y

′
∗

n3
have Ñ∗ = (1, 0, 0).

Bulk n2 = 1 n3 HL HR t16 t7 t8 t1 t2 t3 t4 t5

(1; 1, 1) (1; 1, 1) 0 +,−,+ −, +,− 0 0 0 0 2

3
0 2

3
0 Y ∗

0

(1; 1, 1) (1; 1, 1) 0 −, +,− +,−, + 0 0 0 0 2

3
0 2

3
0 Y

′
∗

0

(1; 1, 1) (1; 1, 1) 1 +,−,+ −, +,− 0 0 0 −
1

2

1

6
1 −

1

3
−1 Y ∗

1

(1; 1, 1) (1; 1, 1) 1 −, +,− +,−, + 0 0 0 −
1

2

1

6
1 −

1

3
−1 Y

′
∗

1

(1; 1, 1) (1; 1, 1) 2 −, +,− +,−, + 0 0 0 −
1

2

1

6
-1 −

1

3
1 Y ∗

2

(1; 1, 1) (1; 1, 1) 2 +,−,+ −, +,− 0 0 0 −
1

2

1

6
-1 −

1

3
1 Y

′
∗

2

Table 15: Local decomposition of excited states from the T2/T ∗

4 sector at n2 = 1. The three

parities for chiral hypermultiplet components HL, HR correspond to to qγ = 0, 1
2 , 1. The singlets

Y ∗

n3
have oscillator numbers Ñ = (0, 1, 0), the Y

′
∗

n3
have Ñ∗ = (1, 0, 0).

Sector n2 = 0 n3 qγ t06 t1 t2 t3 t4 t5

T1/T5 (10; 1, 1) 0 ∗
1

2
0 −

1

6
−

1

2

1

3
0

(5̄; 1, 1) 0 ∗ −
3

2
0 −

1

6

3

2

1

3
0

(1; 1, 1) 0 ∗
5

2
0 −

1

6
−

5

2

1

3
0

T1/T5 (1; 1,8c) 1 ∗
5

2
0 −

1

6
−

1

2
−

1

6
−

1

2

(1;3, 1) 2 ∗
5

2
0 −

1

6

3

2

1

3
0

(1; 1, 1) 2 ∗
5

2
0 −

1

6

3

2
−

2

3
−1 S8

T1/T5* (1; 1, 1) 0 ∗
5

2
−

1

2
−

2

3

1

2

1

3
0 S1

(1; 1, 1) 0 ∗ −
5

2

1

2
−

2

3
−

1

2

1

3
0 S2

2 × (1; 1, 1) 0 ∗
5

2

1

2

1

3

1

2

1

3
0 S3,4

2 × (1; 1, 1) 0 ∗ −
5

2
−

1

2

1

3
−

1

2

1

3
0 S5,6

(1; 3̄, 1) 1 ∗
5

2
0 −

1

6
−

1

2

1

3
0

(1; 1, 1) 1 ∗
5

2
0 −

1

6
−

1

2
−

2

3
1 S7

T3 (1;3, 1) ∗ −
1

3

5

2
−

1

2
0 1

2
0 1

(1; 3̄, 1) ∗ −
1

3
−

5

2

1

2
0 −

1

2
0 −1

Table 16: Local states from the sectors T1/T5 and T3 at n2 = 0. T1/T5* denotes oscillator states.

S1, S2, S7 and (1; 3̄, 1) from that sector have oscillator numbers Ñ∗ = (1, 0, 0), S3 and S5 have

Ñ∗ = (0, 1, 0), S4 and S6 have Ñ∗ = (2, 0, 0).
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J
H
E
P
0
9
(
2
0
0
7
)
1
1
3

Sector n2 = 1 n3 qγ t16 t7 t8 t1 t2 t3 t4 t5

T1/T5 (2, 1; 1, 1) 0 ∗ 0 1 −1 −
1

2
−

1

6
0 −

5

12

1

4
M1

(1, 1; 1, 1) 0 ∗ 10 1 −1 1

2
−

1

6
−1 −

5

12

1

4
S−

1

(1, 1; 1, 1) 0 ∗ −10 1 −1 1

2
−

1

6
1 −

5

12

1

4
S+

1

(2, 1; 1, 1) 1 ∗ 0 −1 1 0 1

3
−1 1

12

3

4
M2

(1, 1; 1, 1) 1 ∗ 10 −1 1 1

2
−

1

6
1 1

12

3

4
S−

2

(1, 1; 1, 1) 1 ∗ −10 −1 1 0 −
2

3
0 1

12

3

4
S+

2

(2, 1; 1, 1) 2 ∗ 0 −1 −1 0 1

3
1 −

5

12

1

4
M3

(2, 1; 1, 1) 2 ∗ 0 1 1 0 1

3
1 1

12

3

4
M4

(1, 1; 1, 1) 2 ∗ 10 −1 −1 0 −
2

3
0 −

5

12

1

4
S−

3

(1, 1; 1, 1) 2 ∗ −10 −1 −1 1

2
−

1

6
−1 −

5

12

1

4
S+

3

(1, 1; 1, 1) 2 ∗ 10 1 1 0 −
2

3
0 1

12

3

4
S−

4

(1, 1; 1, 1) 2 ∗ −10 1 1 1

2
−

1

6
−1 1

12

3

4
S+

4

T3 (1, 1; 1, 1) ∗ 0 10 1 −1 0 0 2 1

4

1

4
S−

5

(1, 1; 1, 1) ∗ 1 10 1 −1 0 0 2 1

4

1

4
S

′
−

5

(1, 1; 1, 1) ∗
1

3
−10 −1 1 0 0 −2 −

1

4
−

1

4
S+

5

(1, 1; 1, 1) ∗
1

3
10 1 −1 −

1

2
−

1

2
−1 1

4

1

4
S−

6

(1, 1; 1, 1) ∗ 0 −10 −1 1 1

2

1

2
1 −

1

4
−

1

4
S+

6

(1, 1; 1, 1) ∗ 1 −10 −1 1 1

2

1

2
1 −

1

4
−

1

4
S

′
+

6

(1, 1; 1, 1) ∗ −
1

3
10 1 −1 1

2

1

2
−1 1

4

1

4
S−

7

(1, 1; 1, 1) ∗ −
1

3
−10 −1 1 −

1

2
−

1

2
1 −

1

4
−

1

4
S+

7

Table 17: Local states from the sectors T1/T5 and T3 at n2 = 1.

B. Anomaly polynomials

In section 4, we checked that the irreducible terms in the anomaly polynomial cancel. The

remaining piece explicitly reads

i (2π)3 Ibulk
8 =

1

16

{
(
tr R2

)2 − 1

6

(
tr R2

)
(

∑

A

mA tr F 2
A +

∑

u,v

muvFuFv

)
(B.1)

+4
∑

A,u,v

dA uv

(
tr F 2

A

)
FuFv +

2

3

∑

u,v,w,x

huvwxFuFvFwFx



 ,

with coefficients

mA =
∑

r

sr

Avr

A − v
(adj)
A , muv = tr6 (tutv) =

∑

i

qi
uqi

v , (B.2)

dA uv =
∑

r

vr

A

srA∑

k=1

qk
uqk

v , huvwx = tr6 (tutvtwtx) =
∑

i

qi
uqi

vq
i
wqi

x . (B.3)

All sums are over hypermultiplets only; the vector multiplets only appear in the final

term of mA. In the sums, i runs over all states, r over all representations of group GA

and k over all multiplets in representation r. qi
u and qk

u are the charges of states and

multiplets under U(1)u, and tr6 denotes the trace of the U(1) generators, i.e. the sum over

the charges of all fields. The integers sr

A are the multiplicities of states transforming in

that representation, and vr

A is its quadratic index. Note that terms ∼
(
tr F 2

A

) (
tr F 2

B

)
for
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H
E
P
0
9
(
2
0
0
7
)
1
1
3

two different non-Abelian factors A,B add up to zero in our model. By explicit evaluation

of these definitions in the basis t̂u = tu/
√

2|tu| we find the results

mA = 6 (2, 2, 1) , muv = 6 (βuv + δuv) , (B.4)

where βuv is given in eq. (4.12). Furthermore

dSU(6) uv = dSU(3) uv = 2dSO(8) uv =
1

2
βuv , (B.5)

huvwx =
3

2|σ(uvwx)| (δuvβwx + perm.) , (B.6)

where |σ(uvwx)| counts all possible distinct permutations of indices u, v,w, x (and only

these are included in the bracket).

Similarly, we calculate the local anomaly polynomial at a fixed point f :

i(2π)3If
6 = − 1

48

∑

u

mf
u Fu tr R2 +

1

2

∑

A,u

df
Au Fu tr F 2

A +
1

6

∑

uvw

hf
uvw FuFvFw. (B.7)

Here the coefficients are defined as follows:

mf
u = trf

(
tfu

)
=

∑

i

bi qi
u , df

Au =
∑

r

vr

A

srA∑

k=1

bk qk
u , (B.8)

hf
uvw = trf

(
tfutfv tfw

)
=

∑

i

bi qi
uqi

vq
i
w (B.9)

All sums refer to the local spectrum at fixed point f , evaluated on left-handed fields. The

local trace trf contains an additional factor bi, which is either one for localized states or 1/4

for states which are induced by bulk fields; the same holds for bk. We conveniently evaluate

these expressions in a basis which consists of t̂fan = tfan/
√

2|tfan|, with tfan from table 7, and

orthogonal generators, t̂f1 ≡ t̂fan, t̂fan · t̂fu = 0 (u > 1). Then the only non-vanishing terms

are

tr0 t̂0an = 2
√

37 , tr1 t̂1an = 2
√

10 (B.10)

and

d0
SU(5) an = d0

SU(3) an = 2d0
SO(8) an = 2 tr0 t̂0an

(
t̂0u

)2
=

2

3
tr0

(
t̂0an

)3
=

1

12
tr0 t̂0an , (B.11)

d1
SU(2) an = d1

SU(4) an = d1
SU(2)′ an

= d1
SU(4)′ an

= 2 tr0 t̂1an
(
t̂1u

)2
=

2

3
tr0

(
t̂1an

)3
=

1

12
tr0 t̂1an .

(B.12)

This shows explicitly that both anomaly polynomials factorize in the required way,

eq. (4.5), i.e. the Green-Schwarz universality relations with levels αSO(N) = 1 and αSU(N) =

2 are fullfilled,

1

48
trf t̂fan =

1

6
trf

(
t̂fan

)3
=

1

2
trf t̂fan

(
t̂fu

)2
=

1

2αA
df

A an . (B.13)
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